Predictive Maintenance with MATLAB
Who Should Attend?
Data Scientist, engineers and managers who need to analyse signals (time series data) for data analytics and predictive maintenance applications

Focuses on data analytic, signal processing, and machine learning techniques needed for predictive maintenance and condition monitoring workflows. Attendees will learn about importing, preprocessing, organizing data. Using signal processing techniques to extract time-frequency information. Estimate Remaining Useful Life (RUL) and apply machine learning techniques.
Topics include:
- Creating, importing and visualizing signals
- Preprocessing to improve data quality, including filling data gaps, resampling, smoothing, aligning signals, finding and removing outliers, and handling non-uniformly sampled signals
- Extracting features in the time and frequency domains, including finding signals from patterns, finding change points, locating peaks, and identifying trends
- Organizing and preprocessing data
- Clustering data
- Creating classification and regression models
- Interpreting and evaluating models
- Simplifying data sets
- Identify features and train decision models to predict remaining useful life (RUL).
- Import and organize data
- Preprocess time-based signals and extract key features in the time and frequency domains
- Build classification and regression model using Statistic and Machine Learning toolbox
- Ensemble data and train model to predict remaining useful life (RUL) with Predictive Maintenance Toolbox
DAY 1 of 3: Signal Preprocessing and Feature Extraction for Data Analytics with MATLAB
Explore and Analyze Signals (Time Series) in MATLAB
Objectives: Learn to easily import and visualize multiple signals or time series data sets to gain insights into the features and trends in the data.
- Import, visualize, and browse signals to gain insights
- Make measurements on signals
- Compare multiple signals in the time and frequency domain
- Perform interactive spectral analysis
- Extract regions of interest for focused analysis
- Recreate analysis with auto-generated MATLAB scripts
Preprocess Signals to Improve Data Set Quality
Objectives: Learn techniques to clean signal sets with operations such as resampling, removing outliers, and filling gaps.
- Perform resampling to ensure common time base across signals
- Work with non-uniformly sampled data
- Find gaps in data and remove or fill gaps
- Remove noise and unwanted frequency content
- Perform wavelet denoising
- Use the envelope spectrum to perform fault analysis
- Locate outlier values in data and replace them with acceptable data
- Locate signal changepoints and use boundaries to automatically create signal segments
Extract Features from Signals
Objectives: Apply different techniques in time and frequency domains to extract features. Become familiar with the spectral analysis tools in MATLAB and explore ways to bring out features for multiple signals.
- Locate peaks
- Locate desired signals from patterns in the time and spectral domains
- Use spectral analysis to extract features from signals
- Perform classification using supervised learning
- Use the Classification Learner app to interactively train and evaluate neural networks
Day 2 of 3: Machine Learning and Predictive Maintenance with MATLAB
Importing and Organizing Data
Objectives: Bring data into MATLAB and organize it for analysis, including normalizing data and removing observations with missing values.
- Data types
- Tables
- Categorical data
- Data preparation
Finding Natural Patterns in Data
Objectives: Use unsupervised learning techniques to group observations based on a set of explanatory variables and discover natural patterns in a data set.
- Unsupervised learning
- Clustering methods
- Cluster evaluation and interpretation
Building Classification Models
Objectives: Use supervised learning techniques to perform predictive modelling for classification problems. Evaluate the accuracy of a predictive model.
- Supervised learning
- Training and validation
- Classification methods
DAY 3 of 3: Machine Learning and Predictive Maintenance with MATLAB
Improving Predictive Models
Objectives: Reduce the dimensionality of a data set. Improve and simplify machine learning models.
- Cross validation
- Hyperparameter optimization
- Feature transformation
- Feature selection
- Ensemble learning
Building Regression Models
Objectives: Use supervised learning techniques to perform predictive modelling for continuous response variables.
- Parametric regression methods
- Nonparametric regression methods
- Evaluation of regression models
Estimating Time to Failure
Objectives: Explore data to identify features and train decision models to predict remaining useful life (RUL).
- Data Organization & Labeling using Data Ensembles
- Condition Indicator Design
- Remaining Useful Life (RUL) Estimator Models
- RUL Estimation Using Dynamic Models
Register Now
Drop us your entry if you are interested to join this course.
You may like
Tableau Desktop Specialist
Tableau Desktop Specialist DATA PRESENTER interested in TABLEAU DESKTOP SPECIALIST Duration: 4 Days This is an examination-based course. This course will cover the concepts and practical skills required to meet the exam expectation. There are no pre-requisites for...
Blockchain Technology For Government And Public Sector
Blockchain Technology For Government And Public Sector Professionals from both all government and public sector especially non ICT’s background Duration: 2 Days This short online course intends to provide a solid, foundational understanding of Blockchain technology to...
Blockchain Technology For Accountants: An Introduction
Blockchain Technology For Accountants: An Introduction Anyone from non-ICT background who involved in creating, executing, monitoring and ensure the success of cooperate business Duration: 1/2 day Blockchain technology is disrupting the way business transactions in...
Python Essentials – Intermediate
Python Essentials: Intermediate IT Professionals, Data Analyst and Professionals with basic knowledge of Python programming Duration: 6 Days This course is to prepare for PCAP, (Python Certified Associate Programming) certification that focuses on measuring user’s...
Python Essentials – Fundamentals
Python Essentials - Fundamentals DATA ANALYSTS, PROGRAMMER with programming knowledge Duration: 4 Days This course is to prepare for PCEP (Python Certified Entry-Level Programming) that focuses on users to be familiar with universal computer programming concepts like...
Visual Analytics for Human Resources
Visual Analytics for Human ResourcesHR PROFESSIONALS involve in STRATEGIC PLANNINGDuration: 3 DaysVisualizations are a hot visual trend in the world of information sharing. We want to make complex topics easy to digest, and people can really understand important facts...
PEOPLE ANALYTICS – Talent Management
PEOPLE ANALYTICS - Talent ManagementHR PROFESSIONALS involve in STRATEGIC PLANNINGDuration: 3 DaysHR professionals are always urged by different questions such as “How high is your annual employee turnover?” or “Do you know which employees will be the most likely to...
Data Virtualization – Your ‘Digital Transformation’ Game Changer
Data Virtualization – Your ‘Digital Transformation’ Game Changer 21 April 2021 9:45 am - 11 am Data led digital transformation empowers banking, insurance and financial services organisations to shift focus from survival to thriving with competitive advantage in the...
INDUSTRY 4.0 COURSE
INDUSTRY 4.0 COURSE 工业4.0意识课程EXECUTIVE, MANAGEMENT and HEAD OF DEPARTMENT, SUPERVISORS, IT, OPERATION TECHNOLOGY and ENGINEERS Duration: 2 DaysTraining Date 26 - 27 April 2021 Industry 4.0 and digital transformation – the key to becoming a competitive enterprise. This...
Getting to Know Graph Database
Getting to Know Graph DatabaseDuration: 2 hoursDate 5 April 2021, 10am - 12pmWHY Graph Database is Important in Today’s World!! We live in a connected world! There are no isolated pieces of information, but rich, connected domains all around us. Only a database that...