Machine Learning with MATLAB
Who Should Attend?
DATA ANALYST and DATA SCIENTIST

The course demonstrates the use of unsupervised learning to discover features in large data sets and supervised learning to build predictive models. Examples and exercises highlights techniques for visualization and evaluation of results.
- Organizing and preprocessing data
- Clustering data
- Creating classification models
- Interpreting and evaluating models
- Simplifying data sets
- Using ensembles to improve model performance
DAY 1 OF 2
Importing and Organizing Data
Objectives: Bring data into MATLAB and organize it for analysis, including normalizing data and removing observations with missing values.
- Data types
- Tables
- Categorical data
- Data preparation
Finding Natural Patterns in Data
Objectives: Use unsupervised learning techniques to group observations based on a set of explanatory variables and discover natural patterns in a data set.
- Unsupervised learning
- Clustering methods
- Cluster evaluation and interpretation
Building Classification Models
Objectives: Use supervised learning techniques to perform predictive modelling for classification problems. Evaluate the accuracy of a predictive model.
- Supervised learning
- Training and validation
- Classification methods
DAY 2 OF 2
Improving Predictive Models
Objectives: Reduce the dimensionality of a data set. Improve and simplify machine learning models.
- Cross validation
- Feature transformation
- Feature selection
- Ensemble learning
Building Regression Models
Objectives: Use supervise learning techniques to perform predictive modeling for continuous response variables.
- Parametric regression methods
- Nonparametric regression methods
- Evaluation of regression models
Creating Neural Networks
Objectives: Create ad train neural networks for clustering and predictive modeling. Adjust network architecture to improve performance.
- Clustering with Self-Organizing Maps
- Classification with feed-forward networks
- Regression with feed-forward networks
Register Now
Drop us your entry if you are interested to join this course.
You may like
Smart Manufacturing – Improving OEE via Predictive Maintenance and Anomaly Detection
Smart Manufacturing - Improving OEE via Predictive Maintenance and Anomaly DetectionPERSONNELS involve in SMART MANUFACTURINGDuration: 3 DaysTraining Date 20 - 22 July 2020 (KL) 10 - 12 August 2020 (Penang) 19 - 21 October 2020 (KL) 1 - 3 December 2020 (Penang) Class...
Python for Machine Learning and Advanced Analytics
Python for Machine Learning and Advanced AnalyticsIT PROFESSIONALS, DATA ANALYST and PROFESSIONALS with basic knowledge of programmingDuration: 4 DaysThis course will introduce the learner to applied data analytics with Python, focusing more on the techniques and...
Modern Data Engineering In The Cloud
Modern Data Engineering In The CloudPERSONNEL involve in DATA INTEGRATIONDuration: 3 Days, 2 Days (Online Class)Data engineering is the crucial part to enable and operationalize big data analytics and cloud applications in the big data ecosystem. Modern data...